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The stability of the viscometric motion of a viscoelastic fluid held between rotating 
parallel disks with large radii to small-amplitude perturbations is studied for the 
Oldroyd-B constitutive model. The disturbances are assumed to be radially localized 
and are expressed in Fourier form so that a separable eigenvalue problem results; these 
disturbances describe either axisymmetric or spiral vortices, depending on whether the 
most dangerous disturbance has zero or non-zero azimuthal wavenumber, respectively. 
The critical value of the dimensionless radius R* for the onset of the instability is 
computed as a function of the Deborah number De, a dimensionless time constant of 
the fluid, the azimuthal and radial wavenumbers, and the ratio of the viscosities of the 
solvent to the polymer solution. Calculations meant to match the experiments of 
McKinley et al. (1991) for a Boger fluid show that the most dangerous instabilities are 
spiral vortices with positive and negative angle that start at the same critical radius and 
travel outward and inward toward the centre of the disk; the axisymmetric mode also 
becomes unstable at only slightly greater values of R*, or De for fixed R*. The 
predicted dependence of the value of De for a fixed R* on the gap between the disks 
agrees quantitatively with the measurements of McKinley et al., when the longest 
relaxation time for the fluid at the shear rate corresponding to the maximum value of 
R* is used to define the time constant in the Oldroyd-B model. 

1. Introduction 
The motion generated by rotating one of two parallel disks of radius R is one of the 

most studied flows in fluid mechanics, as it is the basis for rheological measurements 
of the viscosity and normal stresses in non-Newtonian liquids (Bird, Armstrong & 
Hassager 1987~). The analysis of these measurements assumes that the steady-state 
viscometric motion (ir, io, zi,) = (0, aq 1 - z / H ) ,  O), 
is established, where SZ is the rotation rate of the lower disk (the top disk is stationary), 
H is the spacing between the disks, and the velocity field is expressed in the cylindrical 
coordinate system shown in figure 1 (a). 

Typically, this approximation is valid as long as edge effects can be ignored, i.e. 
H / R  < 1, and inertial effects are small enough that secondary motions are un- 
important (Griffiths, Jones & Walters 1969; Hill 1972). An additional condition is that 
the flow does not become unstable by mechanisms caused by the non-Newtonian 
nature of the fluid. It is this type of instability that is the subject of this paper. 

A transition to time-dependent behaviour was first seen by Jackson, Walters & 
Williams (1984) in experiments with a Boger fluid in a parallel-plate rheometert. They 

t Boger fluids are highly elastic polymer solutions composed of a high-molecular-weight polymer 
dissolved in an almost Newtonian solvent with high viscosity. The viscosity of the fluid remains 
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FIGURE 1. (a) Prototype parallel-plate configuration, and Ekman spirals orienting at (b) a positive 
angle and (c) a negative angle. 

observed that at high shear rates, the torque and normal force exerted by the fluid 
increased steadily over a period of 20 minutes. The increase in torque resulted in an 
increase in the apparent viscosity of the fluid, hence they coined the expression shear- 
thickening or anti-thixotropic transition to describe this behaviour and discussed this 
transition as a rheological change in the fluid. Similar behaviour was observed for other 
Boger fluids by Binnington & Boger (1986), Laun & Hingmann (1990) and Steiert & 
Wolff (1990). 

Magda & Larson (1988) were the first to suggest that the anti-thixotropic behaviour 
observed in rotating rheometers for Boger fluids is associated with a flow transition and 
suggested that, above a critical shear rate, the simple shear flow (1) becomes unstable 
to a more complicated motion. Magda & Larson used a number of different Boger 
fluids to vary the elasticity of the fluid and determined the critical shear rate for the 
instability in both parallel-plate and cone-and-plate devices. In the parallel-plate 
experiments, they noted that the critical shear rate decreased with increasing elasticity 
and increased with decreasing the gap between the plates. 

McKinley et al. (1991) set out convincing results of the presence of a viscoelastic flow 
instability in experiments using a Boger fluid made by dissolving polyisobutylene (PIB) 
in a polybutene/tetradecane (PB/C14) solvent. We describe their results for the 
parallel-plate geometry in some detail because these measurements will be the basis for 
comparison with the stability analysis presented in this paper. The (PIB/PB/C14) 
Boger fluid used in these experiments has been well characterized rheologically by 
Quinzani et al. (1990), who showed that the dependence of the viscosity and normal 
stress on shear rate was only modelled precisely by nonlinear differential constitutive 
almost constant, while the first normal stress coefficient of the fluid decreases with increasing shear 
rate. Various Boger fluids have been used in all the measurements of the viscoelastic instability 
discussed here. 
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equations and by a spectrum of relaxation times determined from linear viscoelastic 
measurements. The longest relaxation time for the fluid can be defined in terms of the 
zero-shear-rate properties of the fluid as 

A =  Ivl0 = 0.794 s, 
O - 2(70 - %) 

where !PI, is the zero-shear-rate value of the first normal stress coefficient, 7, is the 
zero-shear-rate viscosity and qs is the viscosity of the PB/C14 solvent. 

McKinley et al. performed two crucial sets of experiments. In the first, they used a 
commercial parallel-plate rheometer (Rheometrics RMS-800) to detect the onset of the 
instability as a function of the rotation rate of the disk and reported the results as a 
function of the Deborah (De,) and Weissenberg (We,) numbers, defined as 

where R* = R/His the dimensionless radius or aspect ratio. Here the Deborah number 
is a ratio of the relaxation time of the fluid to the timescale (52-') for the fluid in the 
shear flow; the Weissenberg number is the product of the relaxation time and the 
characteristic shear rate QR/H. Time-dependent measurements of the torque and 
normal force were used to detect the critical value of De for the onset of the instability 
and to follow its evolution with De. These experiments documented that the instability 
is described as an initially subcritical Hopf bifurcation, i.e. the unstable transition to 
a time-dependent flow which restabilizes at a finite-amplitude state. Power spectra of 
the shear stress of the finite-amplitude states had several unidentifiable peaks among 
a background of broadband noise and are indicative of the presence of a number of 
unstable modes in the system. The onset of the instability also was observed by the 
exponential growth of the normal stress in the fluid for short times - only on the order 
of 100 s - before nonlinear terms begin to dominate the dynamics. This timescale is 
much shorter than the transients reported by others. 

Perhaps the most convincing evidence for a flow transition was gathered by 
McKinley et al. by flow visualizations of the instability in a larger-scale parallel-plate 
device. Frames from the video of the onset of the instability using the PIB/PB/C14 
Boger fluid are shown as Plate 1 in McKinley et al. (1991); their description of the 
evolution is reproduced here. When the Deborah number for the flow exceeds the 
critical value for onset, the flow is no longer purely azimuthal, but begins to develop 
a banded radial structure composed of many roll cells that are approximately 
axisymmetric and that appear to have a nearly constant radial wavelength which is 
roughly equal to the separation between the plates H.  The cells are not steady in time, 
but increase in intensity and propagate both radially outwards from the centre of the 
disks and radially inward from the outer edge; these travelling waves are clearly shown 
in the video frames referenced above. The structure changes after the two sets of roll 
cells meet near the middle of the disk; the flow is then composed of irregularly spaced, 
slightly non-axisymmetric cells that spiral both inwards and outwards. 

The linear stability analysis described in this paper is aimed at partially describing 
the observations of McKinley et al. (1991). We analyse the stability of the viscometric 
motion (1) to small-amplitude, radially localized disturbances at the position r^ = R 
that can be represented in Fourier form and which lead to a separable eigenvalue 
problem in linear stability analysis. This approximation is formally equivalent to 
expanding the dimensionless radial coordinate (F/H) as i = H(R* + 89, where 5 _= 

O( 1) is the dimensionless radial coordinate and S is a small parameter, and keeping only 
the leading-order terms in e .  In the cylindrical coordinate system shown in figure 1 (a), 

De, = A, 52 and We, = A, OR*, (3) 

16-2 
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the disturbances have the form f ( z )  exp (is++ imB + Sf), where 4 is the dimensional 
radial wavenumber, m is an integer constant, m/R corresponds to the azimuthal 
wavenumber, and & is the dimensional growth rate of the disturbance. Axisymmetric 
disturbances are denoted by m = 0 and describe radially nested vortices; non- 
axisymmetric disturbances have m + 0 and correspond to spiral vortices, as shown in 
figures 1 (b) and 1 (c) .  The angle of the spiral vortices at R 3 
as 

E f arctan -- = arctan - (Z) (G), 
as measured from the radial direction. Negative values of 

H can be approximated 

(4) 

E describe right-handed 
spirals. This analysis is motivated by the successful description of the onset of inertial 
instability near a rotating disk in a Newtonian fluid by disturbances represented in the 
same form (Malik, Wilkinson & Orszag 1981 ; Malik 1986; Oztekin, Bornside & Brown 
1993). 

The analysis reported here is carried out for the Oldroyd-B constitutive equation, 
which is based on the micromechanical model of a solution of Hookean dumbbells 
dissolved in a Newtonian solvent. The Oldroyd-B model is written in dimensional form 
as 

where 7 is the stress tensor, .C, = (Vu+VuT) is the rate-of-strain tensor and yl) is the 
upper-convected time derivative. The total viscosity of the fluid 7, has contributions 
from the solvent ys and the polymer r p  and is decomposed as 7, = vs  + vp. The single 
relaxation time for the fluid is A, and the retardation time is defined as A, = A,l;ls/yo. 
The Oldroyd-B model predicts a constant viscosity qo and a constant first normal stress 
coefficient. This last prediction does not agree with the behaviour of Boger fluids at 
high shear rates where the instability is seen. For comparison with experiments we 
interpret the relaxation time in the Oldroyd-B model A, in terms of the shear-rate- 
dependent rheological properties of the Boger fluid used by McKinley et al. (1991) as 

-c + A, T(1) = TO(+ + A, +(1)), ( 5 )  

where 9 is the shear rate. Shear-rate-dependent values of the Deborah (De(+)) and 
Weissenberg (We(+)) numbers are defined by replacing A, with A,,(+) in (3). McKinley 
et al. (1991) interpreted their experimental results for the onset of the instability in 
terms of De(+) and We(+) and showed that the value of De(+) for onset decreased 
monotonically with increasing We(+) by increasing the aspect ratio of the gap between 
the disks, R* 3 RIH. As described in 95, this behaviour is predicted by the analysis 
presented here. 

The mechanism for the viscoelastic instability described here is related closely to the 
instability analysed first by Larson, Shaqfeh & Muller (1990) in the Taylor-Couette 
geometry. Here a purely elastic instability arises from the interaction of the radially 
varying azimuthal flow and the extensional component of the disturbance in the radial 
direction in the flow with curved streamlines. The instability is oscillatory, not steady 
as is the case for the Newtonian flow. Northey, Armstrong & Brown (1990; also see 
Northey, Armstrong & Brown 1992) used numerical solution of the full equations for 
the upper-convected Maxwell model to demonstrate that the nonlinear states 
correspond to radial travelling waves that emanate from the inner cylinder and move 
outward. They also showed that the number of cells nested radially in the gap increases 
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with increasing gap; for very wide gaps the picture is reminiscent of the structure for 
the parallel-plate geometry that is described above. Shaqfeh, Muller & Larson (1992) 
solved the full linear stability problem and reached the same conclusion. An extensive 
review of the Taylor-Couette and other viscoelastic flow instabilities is given by Larson 
(1992). 

The only previous analysis of viscoelastic instability in parallel-plate rotating flow is 
the calculation of Phan-Thien (1985) for the stability of the base flow of an Oldroyd- 
B fluid to disturbances that can be written in the similarity form appropriate for 
unbounded disks. Phan-Thien predicted an instability to disturbances of this form at 
the critical Deborah number 

where P = qJq,  is the ratio of the solvent viscosity to the total viscosity of the polymer 
solution. Because the disturbance in Phan-Thien’s analysis is written in similarity form, 
the flow must be uniform in the radial direction and cannot model the roll cells seen 
in the experiments of McKinley et al. (1991). Phan-Thien’s analysis predicts instability 
to a steady-state mode, not the oscillatory instability seen in the experiments. Also, the 
value DeApT) for the onset of instability predicted by Phan-Thien’s is independent of the 
gap and is predicted to occur at a value of De(+) greater than the value seen in the 
experiments of McKinley et al. (1991) for any value of R*; moreover, the experiments 
show that De(q) decreases with increasing R* and hence moves away from the value 
De(+) adjusted for the shear-rate-dependence of the relaxation time. 

The outline of the paper is as follows. The equations governing the linear stability 
of radially localized disturbances are described in $2 and the solution method for the 
associated eigenvalue problem is outlined in $3. Results are described in $94.1 and 4.2 
for the Oldroyd-B (qs > 0) and upper-convected Maxwell (qs = 0) models, respectively. 
The predictions are compared in $5  with the experiments of McKinley et al. (1991). The 
mechanism for the instability is discussed in $6 and is shown to be directly related to 
the mechanism described by Larson et al. (1990) for the viscoelastic instability in 
Taylor-Couette flow. 

2. Formulation: governing equations 
We consider a viscoelastic fluid contained between two parallel coaxial disks 

separated by a distance H .  The bottom disk is rotated about its vertical axis with 
angular velocity Q and the top disk is stationary. The flow is described in the cylindrical 
coordinate system (i, 8,i) shown in figure 1 (a)  with 2 = 0 positioned on the rotating 
disk. The inertialess equations governing mass and momentum conservation are 

v.a = 0, (8) 
V . S - V $ + r p +  = 0, (9) 

where li is the velocity vector, S is the polymeric contribution to the deviatoric stress 
tensor and jj is the pressure. In this formulation the total deviatoric stress tensor T has 
been decomposed as T = + qs +. The polymeric contribution to the deviatoric stress 
tensor is given by the Oldroyd-B model (Bird et al. 1987a) as 

1 s + A,, [%+a. 0s -  (Vii)T. s- s. oli = 7 j p  +. a s  
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P(F, 6,0, i') = (0, FIn, 0), li'(F, 6, H, i) = (O,O, 0). 

li,T = (O,In?(l-?/H),O). (12) 

(1 1 a, b) 
In the absence of fluid inertia, the purely azimuthal, steady-state viscometric flow is 

given by the velocity field 

For the Oldroyd-B model the corresponding stress and pressure field, 3 = So and 
f i  = p o ,  are given in component form as 

(13) 
so,, = Sore = so,, = so,, = 0; so, = - T p  Inq i /H)  ; so,, = 27, A,, In2PIHZ ; 

Po = - q p  A,, InZP/H? 

Equations governing the linear stability of the base flow, are formed for 
dimensionless variables scaled with (H,  In-l, HIn, l;lo In) for (length, time, velocity, 
stress). The dimensionless cylindrical coordinates are denoted by (r,  8, z )  and the 
dimensionless time by t. The disturbances to the velocity, pressure, and stress fields are 
written as 

0 
r(1-z) 

0 
-De(l-p)r2 

0 
0 
0 

2De( 1 - p) r2 

0 
-(I -P>. 

+ 

where (u",, 21,, 21,) are the dimensionless (radial, azimuthal, axial) components of the 
velocity field, p" is the pressure, (g,,., &, $,, fee, go,, gZz) are the components of the 
contribution to the polymeric stress, (u,, u,, u,) are the components of the disturbance 
to the velocity field, p is the disturbance to the pressure, (S,,, S,,, S,,, So,, S,,, Sz,) are the 
disturbances to the polymer contribution to the deviatoric stress. The Deborah number 
is defined as De = A,,In. 

Substituting (14) into (8)-(1 l), subtracting the base state, (12) and (13), and retaining 
only terms that are linear in the disturbance amplitude, yields the dimensionless 
disturbance equations and boundary conditions. The continuity and momentum 
equations are 
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where V2 is the Laplacian operator in cylindrical coordinates. The linearized 
components of the constitutive equations are 

(174 
au  

U S r r )  = 2 p p  $3 

L(S,,)+DerS,,-2,8,De2r-+/3pDer-++pDe- a% au, au, = p P  
ae aZ a0 

au 8% 
ae p a Z  

L(S,,) + 2pp De 2 = 2p - , 

where L( . ) = (1 + De a p t  + De r( 1 - z )  ape)  and p p  = (1 - p). The boundary con- 
ditions for the disturbance velocity are 

uT(r, 0 , z ,  t) = (O,O, 0) at z = 0 and z = 1. (18) 

As written in (16) and (17), the linear disturbance equations are not separable. We 
follow Malik et al. (1981), Malik (1986) and Oztekin et al. (1993) and restrict the 
analysis to disturbances that are localized in r .  The spatial dependence of each 
disturbance equation can be separated, if the disturbance is written in the Fourier form 
exp (iar +im6 + crt), where a is the dimensionless radial wavenumber of the disturbance, 
m is an integer (which can be positive, zero, or negative), and is the dimensionless 
temporal eigenvalue (which can be complex). Substituting this form into (15F(18) and 
eliminating the pressure and stress components from (16 a-c) using (1 5 )  and (1 7 a-f ) 
yields 

j = O  

4 2 2 

2 P" ( z cnk(a, m, De, R*, p) Dkw + z dni(a, m, De, R*, p) Dj W )  = 0, (20) 
n=o \k=o j=O 1 

where D = d/dz, P E [I + De cr+i Dem(1 -z)], W(z) is the amplitude of the dis- 
turbances to the vertical velocity, o(z) E iaV(z)-imU(z)/R* = G(z)- V(z)/R*, where 
G(z) is the amplitude of the disturbance to the vertical vorticity and U(z) and V(z) are 
the amplitudes of the disturbances to the radial and azimuthal velocity, respectively. It 
is obvious from this definition that w(z) approximates the amplitude of the disturbance 
to the vertical vorticity for large values of R*. Details of the coefficients anj(a, m, De, 
R*, p), bnj(a,m, De, RX, p), cni(a, m, De, R*,p) and dn,(a, m, De, R*,P) are available 
from the authors. In this form R* = R/H is the dimensionless radial location for the 
localized disturbance. The boundary conditions on the linear stability problem are 

W(0) = D W(0) = w(0) = 0 (2 1 a-c) 

and W(1) = DW(1) = o(1) = 0. (2 1 d-f) 
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3. Numerical solution 
Equations (19) and (20) describe an eigenvalue problem for the growth rate a and 

the eigenfunction, composed of W(z) and w(z), as a function of the spatial wavenumbers 
(a,m), the dimensionless radial distance R* and the parameters De and /3. The 
eigenvalue problem is solved by discretization using Chebyshev polynomials. 

The components of the eigenfunction are expanded in truncated series of Chebyshev 
polynomials. These expansions are simplified by transforming the computational 
domain 0 < z < 1 to 5 = - 22 + 1, so that the new variable 5 satisfies - 1 < < + 1. 
The transformed eigenvalue problems is solved using the Galerkin technique developed 
by Zebib (1987), in which the highest derivatives of the components of the eigenfunction 
corresponding to the disturbances in the axial velocity and ~ ( 0  are approximated by 
truncated sums of Chebyshev polynomials of the form 

j = O  j = O  

where is the jth Chebyshev polynomial and the coefficients { A j ,  Bj )  are computed as 
the solution of the algebraic eigenvalue problem. Representations of lower-order 
derivatives are computed by integrating (22) and using standard properties of 
Chebyshev polynomials. The Galerkin procedure described by Zebib (1987) reduces 
the problem to a matrix eigenvalue problem 

(a4A+a3B+fT2C+aO+€)x1 = 0, (23) 
where a is the temporal eigenvalue, x, E %2(N+1)  are the components of the discretized 
eigenvector and the elements of the square matrices (A, B, C, 0, E), each in 
% 2 ( N + 1 ) x 2 ( N + 1 ) ,  depend on (a, m, De, R*, /3). The leading-order term (g4A) in (23) arises 
from the viscous contribution in (16) and is proportional to the viscosity ratio p 3 

?;ls/v0. Because the matrix A is non-singular for the Oldroyd-B model (p $; 0), the 
decomposition 

a/x ,  = /xa, dx ,  = /x3, a/x3 = /x4, (24 a-c) 

where / is the identity matrix in %2(N+1)X2(N+1), transforms (23) to the generalized 
eigenvalue problem 

where E E  %8(Nfl)XB(N+l) , F E  %8(N+1)X8(N+1) and s = [x,, x,, x,, x J T .  

treatment. The vanishing of the leading-order term in (23) in this limit leaves 

( r E + F ) s  = 0, (25) 

The stability analysis of the upper-convected Maxwell fluid (,8 = 0) requires special 

( F ~ B + ( T ~ C + ~ D + € ) X ~  = 0, (26) 

a/x, = /yl, d y ,  = /y2, ( 2 7 4  b) 

(&+ G)s ,  = 0, (28) 

where B is non-singular. Equation (26) is reduced by the decomposition 

to the generalized eigenvalue problem 

where HE %6(N+1)X6(N+1), G E %6(N+1)X6(N+1), and s1 = [xl, y , ,  y 3 .  The eigenvectors 
and eigenvalues of the algebraic eigenproblems, (25) and (28), are computed using the 
algorithm available as DGVCCG in the IMSL library. 

The stability of the viscometric flow is characterized for given De and m by neutral 
stability curves of R* = R*(a) along which Re (a) = 0. These curves are determined by 
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computing the growth rate r for fixed values of (a, m, De) and several values of R* and 
using bisection to determine the critical value R*(a). For each instability mode, a 
search in radial wavenumber a is used to determine the most dangerous disturbance 
defined as the one corresponding to the minimum value of R*. These searches are 
carried out to one part in 10'. 

4. Results 
4.1. Oldroyd-B model 

Calculations of the stability of an Oldroyd-B model are described for the solvent 
viscosity ratio of p =  0.59, the value for the PIB/PB/C14 Boger fluid used by 
McKinley et al. (1991), and for values of the viscosity ratio in the range 0 < /3 < 1. 
Calculations are reported first for the axisymmetric mode (m = 0), followed by 
calculations for m in the range - 10 < m < 10. 

4,l.  1. Axisymmetric instability: m = 0 
The accuracy of the Galerkin/Chebyshev approximation for the eigenvalue problem 

was tested by checking the spectral convergence of the eigenvalues with smallest real 
part. The real and imaginary parts of the least-stable axisymmetric (m = 0) eigenvalues 
are plotted in figure 2 as a function of the number of polynomials in the expansions (22) 
for Deborah numbers of 1, 2, 3, and 5 and for the parameter values R* = 5,  /3 = 0.59, 
and a = 3.5. For each value of De, both the real and imaginary parts of the eigenvalue 
convergence for values of N as small as five. 

The neutral stability curves R* = R*(a) computed for axisymmetric disturbances 
(m = 0) and /3 = 0.59 are shown in figure 3 for 1 < De < 5. For any value of De, there 
is a critical value R* = RXit(aCrit) that corresponds to the minimum radius for the onset 
of the instability. For R* < R:,rlt(acTit) the viscometric flow is stable for all values of the 
radial wavenumber a, whereas for R* > R,*,,t(a,,dt) the flow is unstable to disturbances 
in some range of a. Monotonically increasing De decreases the curves R* = R*(a), 
making the flow more unstable in the sense that the instability begins at a smaller value 
of the dimensionless radius. The value of the radial wavenumber changes little with De. 
The most dangerous radial wavenumber remains at acrit M 3.2 which corresponds to 
the wavelength being approximately twice the gap spacing 2H in dimensional units. 

The axial variation in the coordinate z of the real and imaginary parts of the vertical 
velocity W(z), w(z)  = iaV(z)-imU(z)/R* and the components of the polymer part of 
the deviatoric stress are shown in figure 4 as computed for the critical values R* = 
R:rit(ac,it) for De = 3 and ,8 = 0.59. The disturbance in the vertical velocity and w(z)  are 
symmetric about the midplane defined by z = 0.5, as shown in figures 4(a) and 4(b), 
with a maximum amplitude at the midplane and zero at the disks. The stress 
components are either symmetric (S,e, S,,) or antisymmetric (See, SO,, S,,, S,.,) about the 
midplane z = 0.5. This eigenfunction structure is not comparable to that predicted by 
Shaqfeh et al. (1992) for the Taylor-Couette flow. Here the disturbances are radially 
and azimuthally periodic and the amplitudes vary in the axial direction, whereas for 
Taylor-Couette flow, the disturbances are axially and azimuthally periodic but the 
amplitudes vary radially. The most dangerous mode predicted for Taylor-Couette flow 
has more than one cell in the radial direction, but the velocity eigenfunction for the 
flow between rotating disks has only one cell between the plates. 

The instabilities defined by the neutral curves shown in figures 3 and 4 correspond 
to travelling waves with positive wave speeds c = -1m ( r ) /a ,  i.e. to waves that travel 
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FIGURE 2. (a) The real and (b) imaginary parts of the least stable axisymmetric (m = 0) eigenvalues 
as functions of the number of polynomials in the expansion N for De = 1, 2, 3 and 5, and for 
R* = 5, /3 = 0.59 and CL = 3.5. 

a 
FIGURE 3. The neutral stability curves R* = R*(a) computed for axisymmetric disturbances 

(m = 0), /I = 0.59 and for De = 1, 2, 3 and 5. 

radially outward. The dependence of the critical wave speed cCrit and wavenumber aCrit 
on De is shown in figure 5 for /3 = 0.59. The critical wavenumber acrit increases slightly 
with increasing De until it reaches a maximum at approximately De = 6 ,  as shown in 
figure 5(a). The wave speed depends monotonically on De and increases toward zero 
at large De. Hence, the disturbances slow with increasing De until they become 
approximately stationary as De approaches 10. 

The travelling wave form of the disturbance and the shape of the neutral stability 
curves gives a picture of the instability that is consistent with the observations of 
McKinley et al. (1991). For a parallel-plate apparatus with given aspect ratio, R / H ,  the 
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FIGURE 4. Disturbance amplitudes for Boger fluid ('J = 0.59) shown as the plots of the real (solid 
curve) and imaginary parts (dotted curve) of (a) W(z), (b)  w(z), (c) So,, (d )  S,,, (e) S,,, (f) S,,, (g) S,,, 
and (h) Srz. Plots are for the axisymmetric disturbances (rn = 0), I?* = 2.70, /3 = 0.59 and a = 3.5. 

instability is expected to start when the Deborah number is increased above a critical 
value where R = R:TTit(aCTit) H .  For De above this value, travelling axisymmetric 
vortices are expected to emanate from the critical radius and move radially outward. 
A more precise comparison between the stability calculations and their observations is 
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FIGURE 5. (a) The critical wavenumber a,,pt and (b) wave speed c , , ~ ~  of the axisymmetric 
disturbances (in = 0) as a function of De for /3 = 0.59. 
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4 -  

't 
FIGURE 6. The critical Weissenberg number We,,, for the onset of the axisymmetric instability as 

a function of De for a viscosity ratio 0.05 < /3 < 0.95. 

reported in $5. Outward-moving radial vortices were also predicted for the 
Taylor-Couette flow by Northey, Armstrong & Brown (1992) and Shaqfeh et al. 
(1 992). 
' The critical value of the radius R* = R~rrit(aerit) for the onset of the axisymmetric 
instability is plotted in terms of the Weissenberg number, defined by ( 3 )  as Wecrlt = 
De RZrit, in figure 6 for a range of the viscosity ratio 0.05 < p < 0.95. For all values of 
the viscosity ratio Wecrit is a decreasing function of De, indicating that the critical 
radius decreases with increasing De. Also Wecrit approaches infinity as De tends to 
zero, indicating the stability of the Newtonian inertialess flow. Interestingly, the 
neutral stability curves for fluids with p in the range 0.05 d /3 < 0.7 are very close for 
0 < De < 2; however, these curves separate for larger De. 

Alternatively, the dependence of We,,,, = DeRZ,,, on p is shown in figure 7 for 
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FIGURE 7. The critical Weissenberg number We,,, for the onset of the axisymmetric 
instability as a function of p for De = 1, 3 and 5 .  

various values of De. The results for the UCM model correspond to the limit p+O, 
which cannot be computed with the solution method used for p > 0;  see the discussion 
in 93. As p-+ 1 all disturbances are stabilized, i.e. We,,,+ 00. The Oldroyd-B model 
reduces to a Newtonian fluid with viscosity qo = T~ in this limit. Each curve for fixed 
De has a shallow minimum that corresponds to a most unstable value of the viscosity 
ratio, i.e. to instability occurring at a smaller radius. This minimum becomes more 
pronounced with increasing De. 

4.1.2. Non-axisymmetric instability: m =i= 0 
Linear stability calculations for non-axisymmetric disturbances (m + 0) have proven 

to be more difficult than for the axisymmetric modes. Insight into the difficulty with 
these calculations is readily gained by calculation of the spectrum of the eigenvalue 
problem predicted as a function of the polynomial discretization. The spectra are 
shown in figure 8 for calculations with N between 30 and 60 and for m = 1, 01 = 3.5, 
R* = 5, /3 = 0.59 and De = 3. Two different types of eigenvalues are found for each 
discretization, corresponding to continuous and discrete parts of the spectrum of the 
original problem. Eight branches of what appears to be a continuous spectrum are 
identifiable with imaginary components that vary between - m < Im (cr) d 0. Six of 
these branches connect at points where the real parts are approximately - 1/De and 
the imaginary parts are nearly 0 and -m. The real parts of the other branches are 
smaller than -1/De. It appears that the upper branch of the continuous spectrum 
extends from - l / D e  to (- l /De- im)  as N increases; however, resolution of the 
associated eigenfunctions requires the use of large N.  Discrete eigenvalues also are 
computed, as shown in figure 8. Increasing the number of polynomials in the 
discretization from 30 to 60 increases the number of discrete eigenvalues from 13 to 23, 
with the remaining additional eigenvalues in the algebraic problem adding to the 
continuous spectrum. 

The spectrum shown in figure 8 has similarities to the eigenvalue spectrum for two- 
dimensional disturbances to inertialess planar Couette flow, which can be computed in 
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FIGURE 8. The spectra of the algebraic eigenvalue problem computed for m = 1, CL = 3.5, R* = 5, 

closed form for the UCM model (Gorodtsov & Leonov 1967). Gorodtsov & Leonov 
found both continuous and discrete parts of the spectrum. The continuous spectrum 
extended from (- 1 / D e  - ai) to (- 1 / D e  + ai), where a is the spatial wavenumber in 
the streamwise direction and De is defined based on the width of the gap and the 
relaxation time for the fluid. The real part of all the eigenvalues in the discrete spectrum 
was - 1/(2De) and so corresponded to the most dangerous disturbance. This flow is 
never unstable to these disturbances; see Brown et al. (1993) for more discussion. 

The accuracy of the calculation of the eigenvalues for the rotating disk flow for non- 
axisymmetric disturbances was tested by repeating calculations with a = 3.5,  R* = 5 ,  
,f? = 0.59 and De = 3 for a number of values of m and N ;  these results are shown in 
figure 9 for 1 < m 8 3.  The convergence of the continuous part of the spectrum was 
considerably slower than for the eigenvalues of the discrete spectrum; moreover, 
disturbances with higher rn require higher spectral resolution. The convergence of the 
most unstable (largest real part) eigenvalue in the discrete spectrum is shown in figures 
9(a) and 9(b), for the real and imaginary parts of the growth rate g, respectively; good 
convergence is obtained for N = 15,20 and 35,  depending on whether m is 1, 2, or 3, 
respectively. In contrast, the most unstable eigenvalue of the continuous spectrum does 

= 0.59, De = 3, with the discretization using (a) N = 30, (b) 40, (c) 50 and ( d )  60. 
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FIGURE 9. The spectral convergence of the least-stable eigenvalues for a = 3.5, R* = 5, f i  = 0.59, 
De = 3 and 1 < m < 3, shown as plots of (a) the real and (b)  imaginary parts of the most un- 
stable eigenvalue of the discrete spectrum, and (c) the real and ( d )  imaginary parts of the most 
unstable eigenvalue of the continuous spectrum as a function of discretization N .  

not converge adequately for N of 50 for any m, as shown by the plots of the real and 
imaginary parts of this eigenvalue in figures 9(c) and 9(d) .  Note that the slopes of the 
dependence of Re (c) and Im (a) on N are very small, indicating that extremely large 
values of N are needed for accurate computation of these eigenvalues. The real part of 
this eigenvalue appears to approach - 1/De as N +  GO. 

It is interesting to note that for small enough N ,  the least-stable eigenvalue from the 
continuous spectrum is predicted to be unstable, i.e. Re(cr) > 0, and that the value of 
N needed to remove this numerically induced instability increases with increasing m. 
This result belies the difficulties with numerical simulation of viscoelastic flows, where 
fine spatial discretizations are needed for stable calculations. The calculations reported 
below are based on the value of N for which the most unstable mode in the discrete 
spectrum is converged to one part in lo4 and all the algebraic eigenvalues that belong 
to the continuous part of the spectrum are stable. 

As shown in figures 1 (b) and 1 (c), non-axisymmetric disturbances correspond to 
spiral instabilities to the viscometric flow with spiral angle c = arctan (m/aR*) formed 
by the spiral and the radial vector. Then positive-angle spirals (c  > 0) are recovered 
from disturbances with rn > 0 and negative-angle spirals (c < 0) result from m < 0. 
Calculations were carried out with m = + M ,  M > 0. These spirals propagate in the 
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FIGURE 11. The critical (a) wave speed ccrtt and (b) radial wavenumber as a function of rn for 
De = 3 and /3 = 0.59. 

direction normal to their surface with wave speed c, = c/cos (e) = -1m (cr)/(acos (e)), 
where c is the wave speed in the radial direction. Positive and negative values of c 
correspond to the spiral vortices travelling radially outward and inward, respectively. 

The neutral stability curves R* = R*(a, m) computed with p = 0.59 and 0.5 < De < 
5 are shown in figure 10 for - 10 < m ,< 10. The critical radii R* = R:rZt(acrit, m) for the 
positive- and negative-angle spirals are approximately the same for all values of De. 
For De = 0.5, the lowest value of R* = R:rrit(~crit,m) occurs for the azimuthal modes 
( M  = 7) with the spiral angle e = f 1.9". Another minimum in R* = R:rr.lt(aerit, m) 
exists for the axisymmetric mode (m = 0). Increasing m from 0 to 4 increases the value 
of R* = R:rrit(acrit,m). The dependence of R,*,$, on m is not monotonic, as shown in 
figures lO(a)(i) and lO(b)(i). The most dangerous radial wavenumbers are almost the 
same for all the modes. The critical modes for De = 1 are spiral vortices with M = 5, 
which corresponds to the angle e = f 3.2". The critical radii R* = RZrrit(aCrit, m) do not 
depend monotonically on m and the most dangerous radial wavenumber varies only 
slightly with m, as shown in figures lO(a)(ii) and lO(b)(ii). For De = 3 and 5, the most 
dangerous mode is m = 1 ; however, the ordering of the non-axisymmetric (m = 2) and 
axisymmetric modes shifts with De. The m = 2 modes are more unstable than the 
m = 0 mode for De = 3 ; this ordering is reversed for De = 5. The most unstable radial 
wavenumber remains at approximately a = 3.5 for all the disturbances shown in 
figures lO(iii) and lO(iv). The spiral angle for the most dangerous non-axisymmetric 
modes varies from 8" to 20" for De increasing from 3 to 5. 

The critical radial wave speed c = cCTit(acrit; m) and the most dangerous radial 
wavenumber a = acr5t(m) are shown in figure 11 as a function of m for De = 3 and 

= 0.59. The dynamics of the axisymmetric travelling vortices and the positive-angle 
spirals are different from those of negative-angle spirals. The positive-angle spirals and 
axisymmetric vortices travel radially outward, whereas negative-angle spirals travel 
radially inward, toward to the centre of the disk. The magnitude of the wave speed of 
the disturbances for negative- and positive-angle spirals remains almost constant at 
cCrit = 0.1, as shown in figure 1 1 (a). The analysis was not continued to higher values 
of m because of inaccuracy in the eigenvalue calculations, as described above. The 
critical value of the radial wavenumber aFrit(m) is show in figure 11 (b) as a function of 
m. The values for m = + M  are approximately the same and the wavenumbers are 
clustered in the range 3.2 < a < 3.5. 
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FIGURE 12. Disturbance amplitudes for Boger fluid (/3 = 0.59) shown as the plots of the real (solid 
curve) and imaginary (dotted curve) parts of (a) W(z), (b)  o(z), (c) S##, ( d )  S,,, (e) S,,, (f) S,,, (g) S,,, 
and (h)  Srz. Plots are for m = 1, R* = 2.19, /3 = 0.59 and a = 3.51. 

The vertical structure of the components of the eigenfunction corresponding to the 
vertical velocity, w(z) and the components of the polymer part of the deviatoric stress 
are shown in figure 12 for the critical radius corresponding to De = 3, /3 = 0.59 and 
m = 1. Unlike the eigenfunctions of the axisymmetric disturbances, the non- 
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FIGURE 14. (a) The critical Weissenberg number We,,,,(De) for the onset of axisymmetric (-) and 
most dangerous non-axisymmetric (----) instabilities and (b) the most dangerous non-axisymmetric 
disturbance M,,,,(De) for /3 = 0.59. 

axisymmetric functions do not have symmetry about the midplane z = 0.5. Both the 
vertical velocity and the vorticity have maxima closer to the stationary disk and have 
more structure than the most dangerous axisymmetric eigenfunction. 

The dependence of the neutral stability curves R* = R:rit(acrit; m) on De is shown in 
figure 13 for /3 = 0.80, 0.5 Q De < 5, and - 10 < m Q 10. For all values De, the most 
dangerous mode is axisymmetric (m = 0). The critical radial wavenumber increases 
from 3 to 3.5 as De increases; however, it is weakly dependent on m. Note that the 
values of RX,, for the axisymmetric mode and the most dangerous non-axisymmetric 
mode are very close for all De, indicating that the axisymmetric instability and the 
spiral vortices will be observed almost simultaneously, as was the case for /3 = 0.59. 

The critical value of the radius R* = R:r,t(acrit; m) for /3 = 0.59 is plotted in figure 
14(a) in terms of the Weissenberg number, defined by (3) as We,,, = De R,*,it, for the 
axisymmetric mode and the most dangerous non-axisymmetric disturbances. In figure 
14(a), the onset radius R:,, for the most dangerous non-axisymmetric mode represents 
the outward-travelling spiral vortices (m = + M ) .  The onset radius of the inward- 
travelling spirals is approximately the same. The axisymmetric disturbance is never the 
most dangerous; however, the difference in Wecrlt is small between the axisymmetric 
and the most dangerous non-axisymmetric modes. The value of m = + M  that 
corresponds to the most dangerous non-axisymmetric disturbance is shown in figure 
14(b) as M,,,,(De). Note that MCrlt increases as De is decreased, but the angle of the 
spiral E goes to zero because R$,, approaches infinity in this limit. Similar results are 
predicted for the elastic Taylor-Couette flow, where Beris & Avgousti (1992) have 
shown that certain non-axisymmetric disturbances are more unstable than the 
axisymmetric disturbances. 

4.2. Upper-convected Maxwell (UCM)  model 
Calculations for the. upper-convected Maxwell fluid (p = 0) were carried out using the 
form (28) of the algebraic eigenvalue problem. The accuracy of the calculations was 
assessed by calculations of the entire spectrum of the algebraic eigenvalue problem for 
different polynomial discretizations for De = 3, R* = 5 ,  m = 1 and a = 3.5; these 
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FIGURE 15. The spectra of the algebraic eigenvalue problem computed for upper-convected Maxwell 
fluid (J? = 0), m = 1, a = 3.5, R* = 5, De = 3, with the discretization using (a) N = 30, (b) 40, (c) 50 
and (d )  60. 

spectra are shown in figure 15. Each shows six branches of a continuous spectrum and 
discrete eigenvalues. The real parts of the discrete spectra are connected at a point 
where Re(cr) = - 1/De and the imaginary parts are 0 and -rn. These six branches 
seem to correspond to the upper six branches that were seen for the calculations with 
the Oldroyd-B model. The instability corresponds to a discrete eigenvalue having 
Re(cr) > 0. As was the case for the Oldroyd-B model, the computation of the 
continuous spectrum was much more difficult than the discrete spectrum; much more 
highly resolved discretizations ( N  B 1) were required for accuracy. Figure 16 
demonstrates the convergence with increasing Nof the most unstable component of the 
discrete spectrum; this eigenvalue is converged to at least one part in lo4 with N = 10 
for 0 < m < 2 and N = 25 for rn = 3, whereas the eigenvalues for the most unstable 
component of the continuous spectrum were not converged to this accuracy with 
N = 60. Again the behaviour with increasing N suggests that Re (cr) for eigenvalues in 
the continuous spectrum converges to - 1/De for all values of rn, as was the case for 
the Oldroyd-B fluid. 
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FIGURE 16. The spectral convergence of the least-stable eigenvalues for (y. = 3.5, R* = 5, /3 = 0, 
De = 3 and 1 < m < 3, shown as plots of (a) the real and (b) imaginary parts of the most 
unstable eigenvalue of the discrete spectrum, and (c)  the real and (d )  imaginary parts of the most un- 
stable eigenvalue of the continuous spectrum as a function of discretization N .  

The neutral stability curves R* = R*(a;m) for several values of m and the 
dependence of the critical radial locations R* = R:rct(acrit; m) on m are shown in figure 
17 for 0.5 < De < 5. For the UCM model, the difference in R:!,, is substantial between 
the axisymmetric and the most dangerous non-axisymmetric modes, indicating that 
spiral vortices should be seen significantly before the axisymmetric instability. Also, the 
spiral angle of the vortices increases from 3.2" to 35" as De increases from 0.5 to 5.  

The critical value of the radius R* = R:rit(aerit; m) is shown in figure 18 (a) in terms 
of the Weissenberg number, defined by (3) as a function of De, for the axisymmetric 
mode and the most dangerous non-axisymmetric mode. The predictions for these two 
types of disturbance diverge for small De and converge for De % 1 ; the axisymmetric 
disturbance is never the most dangerous. The value of m = f M that corresponds to the 
most dangerous non-axisymmetric disturbance is shown in figure 18(b) as Mcri,(De). 

5. Comparison with experiments of McKinley et al. 
The predictions for the onset of the instability described above are compared directly 

with the observations of McKinley et al. (1991) for the instability of a PIB/PB/C14 
Boger fluid. For this comparison we consider the Boger fluid as an Oldroyd-B fluid with 
p = 0.59, as determined directly for measurement of the solvent viscosity and the 
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FIGURE 18. (a)  The critical Weissenberg number We,,,,(De) for the onset of axisymmetric (-) and 
most dangerous non-axisymmetric (----) instabilities and (b) the most dangerous non-axisymmetric 
disturbance M,,,(De) for p = 0. 

almost constant viscosity of the Boger fluid. The shear thinning of the Boger fluid is 
included in this characterization by using the shear-thinning relaxation time defined by 
(6) which was the definition of shear rate y = Q R / H  that corresponds to the shear rate 
of the viscometric flow at the dimensional radial position r^ = R*H for the disturbance. 

Formally, modelling a Boger fluid as a generalized Oldroyd-B fluid with a viscosity 
and a relaxation time that depend on shear rate, h = h(j) ,  would include incorporation 
of the effect of the shear-rate-dependent relaxation time into the equations for the 
disturbance in the stress field formed from the linearized constitutive equation and the 
modification of the stress field of the base state. These changes will modify the stability 
results described in $4. Our approach of modifying the time constant does not take 
these changes into account and is an ad hoc method for including the shear thinning 
of the fluid. However, because the instabilities described by the analysis are localized 
at a specific radial location and because the shear rate varies monotonically with 
radius, using the definition of the local shear rate to determine the relaxation time 
seems justified. 

The data of McKinley et al. for the onset of the instability are shown in figure 19 by 
sets of points in We = We,,,,(De) which correspond to measurements with different 
gaps between the disks, i.e. different values of R / H  for the disks. The onset of small- 
scale vortices that travel inward from the outer edge of the disk is marked by the 
change from open (0) to solid (0)  circles. The predictions from the linear stability 
analysis for the axisymmetric and most dangerous non-axisymmetric modes are shown 
for comparison. The agreement between experiment and theory for the prediction of 
the onset of the instability is good. It is interesting to note that the differences between 
axisymmetric and non-axisymmetric modes are so small that distinguishing these 
modes by experiments may be extremely difficult. Indeed, the visualization of the 
nonlinear state by McKinley et al. showed both axisymmetric and non-axisymmetric 
spiral modes. 

Both the axisymmetric and non-axisymmetric modes correspond to critical radial 
wavenumbers of approximately a,,,, = 3.2, which gives a secondary roll cell with 
lengthscale of approximately twice the gap width or 2H. Taking the stripes in the video 



Instability of a viscoelastic fluid between rotating disks 497 

1 f k -  I B 1 . 1 1 1 1 . B 3 . x  2 4 I - -  - I  * - - * I . * *  6 I *  E 8 I I I I S  B j  10 

De 

FIGURE 19. The critical Weissenberg number We,,,(De) for the onset of axisymmetric (solid curve) 
and most dangerous non-axisymmetric (dashed curve) disturbances predicted by stability analysis 
and the stable (0) and unstable (0) viscometric flow observed by McKinley et al. (1991); 
calculations are for the Oldroyd-B fluid with /3 = 0.59. 

of McKinley et al. (1991) to correspond to two secondary roll cells gives an 
approximate spacing from the experiments as 2H. This surprising agreement is 
discussed in 56. 

The wave speed for De = 4.65 predicted from the linear analysis is cCrit = 0.063 for 
the axisymmetric mode and cCrit = 0.055 and -0.072 for m = + 1 and - 1 non- 
axisymmetric modes, respectively. Although travelling wave moving radially outward 
from near the centre of the disk and inward from the outer edge of the disks were 
observed in the experiments of McKinley et al., no attempt was made to measure 
directly the wave speed. For the same De, the power spectrum of the shear stress 
measured by McKinley et al. in a commercial rheometer showed a weak peak at 
frequency f = 0.025 Hz and a number of other peaks ranging between 0.045 <f< 
1.4 Hz. The appearance of these peaks is in reasonable agreement with the frequencies 
predicted by linear stability analysis off = 0.037 for the axisymmetric mode and f = 
0.032 for the m = 1 non-axisymmetric mode. 

6. Mechanism of instability 
The micromechanical mechanism for the instability in the flow between the parallel 

rotating disks can be described by referring to the development of the Oldroyd-B 
model from the kinetic theory for a dilute solution of infinitely extensible dumbbells 
(Bird et al. 1987 b), and by using an argument similar to the one developed by Larson 
et al. (1990) and Joo & Shaqfeh (1992). Here the polymeric stress is proportional to the 
ensemble average of the dumbbell confirmation; hence S,, is a measure of the 
stretching of the dumbbells in the z-direction. 

The mechanism of the instability in the axisymmetric mode is associated with the 
coupling between the disturbance, base-state polymeric stress and the velocity gradient 
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FIGURE 20. Schematic of a dumbbell located in the axial direction between the plates. The base flow 
stretches the dumbbell in the azimuthal direction from (a) to (b); secondary flow deflects the bead in 
the axial direction; and the base flvw stretches the bead farther from (c) to (d). 

in the z-direction, which couples through the curved streamlines of the base flow to 
create a perturbation in the hoop stress, see, that reinforces the secondary flow. To see 
this consider an axisymmetric disturbance, which gives rise to an axial extensional 
component of the velocity gradient au,/az and which stretches the dumbbell in the z- 
direction, as shown in figure 20. That disturbances creates a perturbation to the normal 
stress S,, which must satisfy 

(29 4 L(S,,) = 2p -. a% 
az 

The coupling between the perturbation in the axial normal stress S,,, the base-state 
velocity gradient auo,/dz, shear stress So, and the perturbation to the velocity gradient 
au,/az produces a perturbation to the shear stress given by 

au, - 
aZ L(S8,) + De r S,, + p,De r -  - 0. 

The coupling between the perturbation shear stress and the base-state velocity gradient 
deforms the dumbbell in the azimuthal direction which causes an increase in the ‘hoop 
stress’ 

(29 4 
Because the streamlines are curved, the elastic hoop stress reinforces the axial 
perturbation flow. Taking the essential terms in the radial and axial momentum 
equations, (1 6 a) and (1 6 c) become 

L(&& + 2De r So, = 0. 

Assuming that the disturbance is localized in r,  we write the disturbance in the Fourier 
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FIGURE 21. The critical dimensionless radius or aspect ratio R* = R:rtt(:crJ computed for /3 = 0.50 
and Deborah numbers for the onset of axisymmetric instability. The solid and dashed curves are for 
the full eigenvalue problems, (19) and (20), and for the approximate analysis that leads to (30), 
respectively. 

0.001 

form exp (iar + d). Using continuity, iaU = - D W, and eliminating pressure and stress 
components from 29 (a+) yields the fourth-order equation 

P3/3(D4 - 2a2D2 + a4) W +  P2i De2 R*aP, D2 W+ 4 De2 R*ia/3, D2W = 0, (30) 
where P = (1 +De g). Equation (30) with boundary conditions (21) describes an 
eigenvalue problem that can be solved using the numerical technique described in $ 3 .  
The critical value of the radius R* = RZrit(aCrZt) for the onset of the axisymmetric 
instability computed from this equation is plotted as a function of De in figure 21. The 
solution of the full eigenvalue problem is shown as well; the predictions of the two 
analyses are in reasonable agreement. The difference in RZr, is substantial for small 
values of Deborah number because of the contributions from the terms neglected in 
(19) and (20). However, both curves approach the same asymptote for large values of 
De, indicating that the mechanism described above is operative in the full analysis as 
well. 

The mechanism for the non-axisymmetric modes requires a different pathway to the 
development of the ‘hoop stress’ Soo. The perturbation of normal shear stress S,, is 
created from both vertical and azimuthal gradients of the perturbation axial velocity. 
The couplings of S,,, au,,/az, au,/aO, Sooo, au,/az and So, produce the perturbation 
shear stress. The hoop stress is generated from the coupling of the perturbation to the 
shear stress and the base-state velocity gradient auoo/az. The dumbbell is stretched in 
the axial direction by both azimuthal and axial variations in the perturbation to the 
vertical velocity. 

7. Discussion 
The analysis of the linear stability problem defined for radially localized disturbances 

to the viscometric flow between two parallel rotating disks leads to a picture for the 
onset of the viscoelastic flow instability that is consistent with many of the observations 
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of McKinley et al. (1991). For given Deborah number and viscosity ratio in the 
Oldroyd-B model, instability begins at a critical radius and has the form of either 
axisymmetric or spiral vortices that move radially outward and inward as travelling 
waves. Both the axisymmetric and spiral modes can cause instability at approximately 
the same values of radial wavenumber and radial location, depending on De and the 
viscosity ratio. In some cases several modes have onset close enough in radial location 
to be indistinguishable in experiments. The radial location for the onset of the 
instability decreases with increasing De. 

The results of this analysis are compared directly to the experiments of McKinley et 
al., by assuming that the instability starts at the outer radius of the finite disks in the 
experiment and defining both the Deborah and Weissenberg numbers according to 
(3). The comparison of the predictions for the Oldroyd-B fluid with the appropriate 
viscosity ratio to the experimental measurements for We = We,,,(De) is good, as 
shown in figure 19. These results strongly suggest that the radial instability described 
here is responsible for the anti-thixotropic transition seen in rotating-disk rheometers. 
The flow instability has obvious and important implications for the use of a parallel- 
disk apparatus to measure the rheological properties of very elastic fluids, by rendering 
the assumption of a known viscometric fluid invalid beyond a critical value of De, 
which can be ascertained from the results included here. The same type of instability 
also is responsible for the flow transitions documented by McKinley et al. in a cone and 
plate rheometer; we will report an analysis of this instability in a later paper. 

The analysis described here cannot be compared to Phan-Thien’s analysis (1983, 
1985) in any limit. The plot of We = We,,!,(De) shown in figure 19 indicates that R* 
tends to infinity at De = 0, but not at a finite value of De. Hence, a finite value of the 
critical onset radius is predicted for any finite value of Deborah number. However, the 
stability analysis of Phan-Thien predicts that there exists finite value of the critical 
Deborah number below which the viscometric motion is stable everywhere. The 
instability predicted by Phan-Thien is in the similarity form so the resulting secondary 
flow consists of one cell in the radial direction, which is equivalent to our disturbance 
form when the wavelength in the radial direction is infinite. This limit is approached 
for large values of Deborah number for which the critical aspect ratio and the critical 
wavenumber asymptote to zero; see figure 21. Because the present analysis is limited 
to the localized disturbance, the prediction in this limit is not reliable. 

Other points of comparison between the experiments of McKinley et al. and the 
calculations reported here appear to require nonlinear analysis. First, the propagation 
of the travelling waves to radial locations satisfying r < R* would seem to correspond 
to motion of the instability into a region of the disk that is otherwise stable to the linear 
instability. Indeed the nonlinear evolution of the instability is shown by McKinley et 
al. to be initially subcritical, i.e. there is a region of De of hysteresis where the 
viscometric and nonlinear states coexist. The long development time and the complex 
spectrum of the time dependence of the torque induced by the nonlinear flow suggest 
that the nonlinear state that evolves after the subcritical instability is an almost chaotic 
interaction of several nonlinear modes, perhaps including another instability that 
begins at the centre of the disk. It might be coincidence that the apparent spatial 
wavelength of this nonlinear state and the wavelength of the radial travelling wave 
agree; the value of the nonlinear state is approximately 2H, and the values predicted 
by the linear stability analysis vary around 2H. Understanding of the evolution and 
interactions of different travelling instability modes requires weakly nonlinear analysis 
and full nonlinear simulations. 

Although the analysis is restricted to radially localized disturbances, it still includes 
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the effects of streamline curvature through the base flow and terms retained in the 
linear stability analysis. The discussion in $6 shows that this effect is the most 
important component of the instability mechanism. The different stability properties of 
positive (m > 0) and negative (m < 0) angle spirals are a result of this curvilinear effect. 
The analysis predicts that negative- and positive-angle spirals onset at approximately 
the same radial position, so it is expected to be difficult to distinguish these 
disturbances. Interestingly, both inward- and outward-travelling spirals were observed 
by McKinley et al. (1991). The experimental observation of the onset of the instability 
as a subcritical transition suggests that a nonlinear analysis is needed to predict the 
interaction between these modes that are observed for De above criticality. 

Although the analysis described here gives reasonable agreement with previous 
experimental observations, there are a number of theoretical questions that still need 
to be considered, even for linear stability theory. The analysis described here is based 
on the assumption of radially localized disturbances. This assumption greatly simplifies 
the analysis, but has the drawback of making disturbances appear approximately 
rectilinear and not accounting for the finiteness of the disks or the importance of the 
centreline. Asymptotic expansions in r ,  as applied by Malik et al. (1981), Malik (1986), 
and Oztekin et al. (1992), begin to alleviate the first limitation, but still will not be valid 
near the centreline or disk edge. Full solution of the full three-dimensional eigenvalue 
problem appears to be the only method for addressing this problem in general. 

As described above, the method discussed in $ 5 for incorporating shear thinning is 
approximate, at best. A rigorous linear stability analysis incorporating shear thinning 
into the constitutive equation is needed to justify this approximation. 
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